model icon

scgpt

Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI

scGPT

This is the official codebase for scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI.

Preprint

Documentation

!UPDATE: We have released several new pretrained scGPT checkpoints. Please see the Pretrained scGPT checkpoints section for more details.

Installation

scGPT is available on PyPI. To install scGPT, run the following command:

$ pip install scgpt

[Optional] We recommend using wandb for logging and visualization.

$ pip install wandb

For developing, we are using the Poetry package manager. To install Poetry, follow the instructions here.

$ git clone this-repo-url
$ cd scGPT
$ poetry install

Note: The flash-attn dependency usually requires specific GPU and CUDA version. If you encounter any issues, please refer to the flash-attn repository for installation instructions. For now, May 2023, we recommend using CUDA 11.7 and flash-attn<1.0.5 due to various issues reported about installing new versions of flash-attn.

Pretrained scGPT Model Zoo

Here is the list of pretrained models. Please find the links for downloading the checkpoint folders. We recommend using the whole-human model for most applications by default. If your fine-tuning dataset shares similar cell type context with the training data of the organ-specific models, these models can usually demonstrate competitive performance as well.

Model name Description Download
whole-human (recommended) Pretrained on 33 million normal human cells. link
brain Pretrained on 13.2 million brain cells. link
blood Pretrained on 10.3 million blood and bone marrow cells. link
heart Pretrained on 1.8 million heart cells link
lung Pretrained on 2.1 million lung cells link
kidney Pretrained on 814 thousand kidney cells link
pan-cancer Pretrained on 5.7 million cells of various cancer types link

Fine-tune scGPT for scRNA-seq integration

Please see our example code in examples/finetune_integration.py. By default, the script assumes the scGPT checkpoint folder stored in the examples/save directory.

To-do-list

  • Upload the pretrained model checkpoint
  • Publish to pypi
  • Provide the pretraining code with generative attention masking
  • Finetuning examples for multi-omics integration, cell type annotation, perturbation prediction, cell generation
  • Example code for Gene Regulatory Network analysis
  • Documentation website with readthedocs
  • Bump up to pytorch 2.0
  • New pretraining on larger datasets
  • Reference mapping example
  • Publish to huggingface model hub

Contributing

We greatly welcome contributions to scGPT. Please submit a pull request if you have any ideas or bug fixes. We also welcome any issues you encounter while using scGPT.

Acknowledgements

We sincerely thank the authors of following open-source projects:

Citing scGPT

@article{cui2023scGPT,
title={scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI},
author={Cui, Haotian and Wang, Chloe and Maan, Hassaan and Pang, Kuan and Luo, Fengning and Wang, Bo},
journal={bioRxiv},
year={2023},
publisher={Cold Spring Harbor Laboratory}
}

Related notebook

BioTuring

Required GPU

expiMap: Biologically informed deep learning to query gene programs in single-cell atlases

The development of large-scale single-cell atlases has allowed describing cell states in a more detailed manner. Meanwhile, current deep leanring methods enable rapid analysis of newly generated query datasets by mapping them into reference atlases. expiMap (‘explainable programmable mapper’) Lotfollahi, Mohammad, et al. is one of the methods proposed for single-cell reference mapping. Furthermore, it incorporates prior knowledge from gene sets databases or users to analyze query data in the context of known gene programs (GPs).

Ionocytes

Endometrial ciliated cells

More

BioTuring

Doublet Detection: Detect doublets (technical errors) in single-cell RNA-seq count matrices

Doublets are a characteristic error source in droplet-based single-cell sequencing data where two cells are encapsulated in the same oil emulsion and are tagged with the same cell barcode. Across type doublets manifest as fictitious phenotypes that can be incorrectly interpreted as novel cell types. DoubletDetection present a novel, fast, unsupervised classifier to detect across-type doublets in single-cell RNA-sequencing data that operates on a count matrix and imposes no experimental constraints. This classifier leverages the creation of in silico synthetic doublets to determine which cells in the input count matrix have gene expression that is best explained by the combination of distinct cell types in the matrix. In this notebook, we will illustrate an example workflow for detecting doublets in single-cell RNA-seq count matrices.

Club cells

Respiratory ciliated cells

More

BioTuring

NicheNet: modeling intercellular communication by linking ligands to target genes

Computational methods that model how the gene expression of a cell is influenced by interacting cells are lacking. We present NicheNet, a method that predicts ligand–target links between interacting cells by combining their expression data with prior knowledge of signaling and gene regulatory networks. We applied NicheNet to the tumor and immune cell microenvironment data and demonstrated that NicheNet can infer active ligands and their gene regulatory effects on interacting cells.

Ionocytes

Basal keratinocytes

More